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Abstract. A simple lattice model describing the recombination dynamics in visible-light-
emitting porous silicon is presented. In the model, each occupied lattice site represents a Si
crystal of nanometre size. The disordered structure of porous silicon is modelled by modified
random percolation networks in two and three dimensions. Both correlated (excitons) and
uncorrelated electron–hole pairs have been studied. Radiative and non-radiative processes as
well as hopping between nearest-neighbour occupied sites are taken into account. By means of
extensive Monte Carlo simulations, we show that the recombination dynamics in porous silicon
is due to a dispersive diffusion of excitons in a disordered arrangement of interconnected Si
quantum dots. The simulated luminescence decay for the excitons shows a stretched exponential
lineshape while for uncorrelated electron–hole pairs a power-law decay is suggested. Our results
successfully account for the recombination dynamics recently observed in experiments. The
present model is a prototype for a larger class of models describing diffusion of particles in a
complex disordered system.

1. Introduction

Silicon, the most studied semiconductor, is not a good light emitter, especially in the visible
range, because of its indirect-band-gap transition in the infrared (1.1 eV). The recently
discovered optical properties of porous forms of silicon (porous Si) have therefore attracted
considerable interest [1, 2, 3, 4]. In addition to the internal nanometre-sized structures
which are distributed in space according to a complex topology [5], these new materials
have similar spectral behaviours, the most prominent of which are a rather high luminescence
quantum efficiency and an unexpectedly wide range of luminescence lifetimes (ranging from
microseconds to milliseconds), depending on temperature.

The mechanism of the luminescence emission is still unclear. Three main models have
been proposed and are still under debate:

(i) the quantum recombination model [6, 7, 8];
(ii) the surface-state model [9]; and
(iii) the molecular recombination model [10, 11, 12].

The first two models agree on the fact that the energy spectrum of porous Si is a result
of the quantum confinement of carriers in Si nano-crystals. Still under debate is the shape of
the nano-crystal that has been described either in terms of ‘undulating’ quantum wires [6] or
quantum dots [8]. The quantum recombination and the surface-state models differ in their
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predictions about the origin of the luminescence. In the first case, the luminescence is due
to confinedand localized excitons, while in the second, the luminescence is due to electron–
hole pair recombination, where the electron and the hole could be found either in a bulk
nano-crystal state (an ‘extended’ state), or being trapped into a surface nano-crystal state (a
‘localized’ state). The third model, the molecular recombination model, considers that some
particular molecular species like polysilane chains (e.g. the SiH chain [10]) or siloxene-like
rings (Si–O–H) [11] form on the surface of the Si nano-crystals. The luminescence is due
to the carrier trapping into these species.

Recent experiments [13–20] have provided clear evidence of anomalous relaxation
behaviour of the luminescence. The decay lineshape, for asingleobservation energy, isnot
described by a single exponential function. This non-exponential behaviour is commonly
described by a stretched exponential function [21, 22, 23], defined as

L(t) = L(0) exp[−(t/τ )β ] (1)

where L(t) is the time-dependent luminescence intensity,τ is a lifetime andβ 6 1 a
dispersion exponent. In general, values ofβ < 1 correspond to the existence of a broad
distribution of lifetimes. In some circumstances, such broad distributions may be the result
of a diffusive motion of the excited carriers. This may be the case in porous Si, as suggested
recently in terms of trap-controlled hopping processes [18]. We elaborate this idea further
in this work.

Figure 1. The distribution of optical band-gaps for an ensemble of quantum dots (dotted line)
(equation (2)), and the corresponding density of states (continuous line) (equation (4)) versus
energy.

Motivated by these experimental results, and by the fact that little is known about
the recombination dynamics of the charge carriers in these materials, we have initiated a
detailed numerical study of the underlying transport behaviour in porous Si by means of
Monte Carlo (MC) simulations.

In this work, we present a simple model of porous Si in which nanometre-sized crystals
(nano-crystals), characterized by a distribution of radiative and non-radiative recombination
times, are assumed to be randomly placed at the sites of percolation-like clusters defined
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on square and simple cubic lattices. Charge carriers are allowed to hop between nearest-
neighbour occupied cluster sites. The competing effect between radiative and non-radiative
transitions in a single Si nano-crystal, as well as the effects of geometrical constraints on
hopping of carriers due to the complex topology of percolation clusters, are discussed.

Even though our simulations are based on the quantum recombination model [6, 7], they
are consistent with other possible recombination mechanisms because the model concentrates
on the dynamics of the recombination and not on the recombination process itself. However,
we found that most of the data are better explained by our simulations when the quantum
recombination model is assumed. In addition, since our model is based on quite general
assumptions about the geometrical disorder involved, we expect that it may be applied to
a larger class of physical systems characterized by both a structural and local disorder, of
which porous Si is just one possible example.

The paper is organized as follows: in section 2 the model is described, and exact
solutions obtained in the case of isolated Si nano-crystals are discussed. In sections 3
and 4, simulation results for one-, and two- and three-dimensional systems, respectively,
are presented. In section 5, a discussion of the present results is presented and they are
compared to other results already known in the literature. Finally, in section 6 we give
some concluding remarks.

2. The model for Si nanometre-sized crystals

We consider a lattice model for porous Si in which occupied and empty sites are present.
Each occupied site of the lattice represents a Si nano-crystal. In one dimension, all the
sites are occupied by Si nano-crystals, while in higher dimensions the occupied sites are
randomly distributed in space and interconnected to each other according to the topology
of percolation-like clusters (see section 4). We further assume that the physical properties,
relevant for our problem, of such Si nano-crystals are suitably described in terms of quantum
dots (QD), for which many theoretical results are currently available.

2.1. The size and radiative energy of a Si nano-crystal

Each Si nano-crystal, or equivalently, each occupied site of the lattice, is characterized by
a sized, representing its mean diameter (typically in the range 15 to 55Å [24]). Since
the actual spatial distribution of nano-crystal sizes is not knowna priori, the sizesdi at
sites i are chosen randomly according to a Gaussian distributionP(d) [25]. We used
P(d) ∼ (1/σd) exp[−(1/2σ 2

d )(d − d0)
2], centred atd0 = 32.4 Å and having a width

σd = 0.8 Å. For simplicity, we further assume that the underlying (hypercubic) lattice has
a lattice constanta ∼= d0, which determines the unit of length used in our calculations.

In one dimension, thislocal randomness is the only source of disorder in the model,
while in higher dimensions, an additional (geometrical) disorder, due to the complex
structure of percolation-like clusters, is also present (see section 4).

Due to the experimental method of preparation of porous Si, however, some correlation
between the sizesd may actually be present for nearby Si nano-crystals, from which one
may reasonably expect that strong local variations ind are not likely to occur [5]. To take
this effect into account in a simple way, the sizesd corresponding to nearest-neighbour
occupied sites are not allowed to differ by more than a pre-fixed amount. We are going to
specify this point below.

By neglecting the excitonic binding energy, the optical band-gap energyE associated
with a given Si nano-crystal is assumed to correspond to the emission energy determined
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experimentally.Ei is related to the sizedi through the power-law relation recently suggested
on the basis of calculations performed for spherical quantum dots [26]. Based on these
calculations, we assumeEi = E0(d0/di)

n, with n ∼= 1.39, whereE0 = 1.86 eV is the
transition energy for a Si nano-crystal of sized0. The corresponding distribution forE is
then of the form

P(E) ∼ 1

σd

1

E1+1/n
exp[−(d2

0/2σ 2
d )((E0/E)1/n − 1)2] (2)

centred aroundE0 and having a width at half-maximum of about 0.16 eV (see figure 1).
It is instructive to obtain estimates of the total density of statesρ(ε) resulting from

these distributions. For simplicity, an ensemble of quantum dots of cubic shape and side
Lx = Ly = Lz = d is considered [27]. The (confined) electronic states have energies
ε(nx,y,z) = ε0(nx + ny + nz), whereε0 = h̄2π2/(2µd2), nx , ny and nz are the principal
quantum numbers for motion in thex, y and z directions,nx,y,z > 1 andµ represents the
effective mass of the exciton. In this simple model, we have neglected the binding energy
of the exciton and assumed that the effective mass of the hole is much larger than that of
the electron. Then, the transition energyE can be related to the ground-state energy of the
QD by E = 3ε0 + EBulk, whereEBulk = 1.15 eV is the bulk Si indirect gap. The density of
states for a single quantum dot of sized with an energy barrier of heightV (QD) is then [27]

ρd(ε) ∼= 2V (QD)

d3

∑
nx,y,z

δ(ε − ε(nx,y,z) − EBulk) (3)

whereε is an energy and the total density of states is

ρ(ε) =
∑

d

P (d)ρd(ε). (4)

This quantity is plotted in figure 1 assuming a Gaussian broadening of the single QD state
of 0.01 eV. The density of states of an ordered ensemble of QDs should reveal a series
of distinct peaks corresponding to the different confined statesε(nx,y,z) in the QD. The
random Gaussian distribution of sizes, yielding a distribution ofE, smears out the discrete
peaks and yields an approximately exponential behaviour of the formρ(ε) ∼ exp(ε/εa),
with εa

∼= 0.35 eV, at largeε.
To deal with the above-mentioned spatial correlations ind, the difference in energy

between nearest-neighbour sitesi and j , 1Eij = Ej − Ei , is allowed to take absolute
values smaller than a given cut-offEcut. This is the criterion employed to accept a given
value of dj , with respect to the previous value at sitei, from the Gaussian distribution.
In dimensions higher than one, this criterion is applied simultaneously with the growing
process (see section 4). For convenience, we consider variations in energy, rather than
variations in size to select the values of the local quantitiesE and d. The results are not
sensitive to this choice. Typical calculations have been performed for values in the range
10−4 < Ecut < 0.4 eV (see section 3).

2.2. The radiative and non-radiative recombination times

Within each Si nano-crystal, both radiative and non-radiative recombination processes occur
when excited electron–hole pairs are present. Both processes depend on the sized of the
nano-crystal.

The emission process is assumed to be due to excitonic recombinations in a QD. In
this case, it was shown that the radiative recombination time,τrad, results from the thermal
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balance between the occupation of the exchange-split singlet and triplet excitonic states [7],

τrad(E, T ) = τtripl

[
1 + (1/3) exp(−1Ex/kBT )

1 + (1/3)(τtripl/τsing) exp(−1Ex/kBT )

]
. (5)

τsing (the radiative lifetime for the singlet excitonic state) is obtained from the values
calculated in [28]:

τsing(E) = τ
(0)

sing

(
EBulk

E − EBulk

)ns

(6)

wherens = 1.5. At the present, no theoretical calculations are available for the radiative
lifetime of the triplet excitonic state,τtripl . Thus,τtripl is estimated from the experimental
data reported in [7]:

τtripl(E) = τ
(0)

tripl [τsing(E)]αs (7)

whereτ
(0)

tripl = 2368µs, andαs = 0.307.
Finally, the quantum-confinement-enhanced exchange energy1Ex = ESi

x (dx/d)3,
where ESi

x = 3.165 × 10−4 eV is the exchange energy in crystalline Si anddx = 43
Å, is obtained from the calculations in [29].

Non-radiative recombinations have been considered as multiphonon transition processes
for trapping on a deep centre [30], for which the non-radiative recombination time,τnr, is
given by

τnr(T ) = τ (0)
nr

e2nT S

(nT + 1)p
(8)

wherenT = [exp(h̄ωph/kBT ) − 1]−1 is the density of phonons with energy ¯hωph, andS

and p are related to the details of the capturing centre. Here we have used nano-crystal
size-independent quantities, with ¯hωph/kB = 800 K, S = 1, andp = 25. If bulk Si optical
phonons are involved, ¯hωph/kB ' 1100 K; lower values can be justified by the typical
softening of the phonon modes in a confined system on a localized centre.

It should be emphasized that the actual nature and origin of non-radiative phonon
transition processes in porous Si nano-crystals remain to be understood. Here, such
processes are included because they certainly play a very important role in the recombination
dynamics of carriers [8, 9]. The form forτnr in equation (8) can be only considered as a first
approximation to the actual form of the non-radiative recombination time, yet it is expected
to describe the physics involved correctly, at least in a qualitative fashion. In this work, the
sameτnr has been employed for all the Si nano-crystals.

2.3. The rates of hopping between Si nano-crystals

In addition to the internal structure of Si nano-crystals, hopping of electrons, holes and
excitons may actually occur between nearby nano-crystals. To describe the diffusion of
carriers in porous Si, we consider hopping processes only between nearest-neighbour (n.n.)
occupied sites of the lattice for two different models. In the first model, only one type of
carrier hops, representing the exciton, while in the second, two different types of carrier
can hop, representing the electron and hole. If the electron and hole (e–h) motions are
strongly correlated, e.g. if the hole closely follows the electron as it moves in the system,
one has essentially the first model. As we will see in sections 3 and 4, a qualitatively
different behaviour is obtained when e–h hops are completely uncorrelated. In both models,
correlated and uncorrelated e–h pairs, the on-site radiative recombination is assumed to be
excitonic.
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The rates of transition for a carrier of typex (x ≡ ex, representing the exciton,x ≡ e,
the electron, andx ≡ h, the hole) from the sitei to its nearest-neighbour occupied sitej

are defined as

P x
ij = 1

τ x
hop

whenEj − Ei 6 0 (9)

and

P x
ij = 1

τ x
hop

exp(−fx 1Eij/kBT ) whenEj − Ei > 0 (10)

where 1Eij = Ej − Ei . When the sitej is not occupied, as may occur in two- and
three-dimensional systems, thenP x

ij = 0. Here, 0< fx 6 1 is an additional parameter
related to the band structure of nano-crystals, andτ x

hop is a characteristic time for tunnelling
of x-carriers between nearby (n.n.) Si nano-crystals, which is temperature independent. In
equations (9) and (10), no dependence on the intersite distance,rij , between n.n. Si nano-
crystals is explicitly shown. In a more refined version of the present model, one could
consider in equations (9) and (10) a dependence onrij of the form

1

τ x
hop

= νx exp(−γij rij ) (11)

whereνx is an attempt frequency andγij is related to the energy barrier which separates
the QDs at sitesi and j . The quantitiesγij and rij may then be considered as random
variables. For simplicity, we useτ x

hop = τhop here, independently of the type of carrier.
Thus, the dependence of hopping rates onx is only contained in the factorfx .

Table 1. Values used in the Monte Carlo calculations.`(3/D) is the linear size of theD-
dimensional lattice employed,tmax the maximum number of MC steps for a single run,nruns the
number of runs (i.e. the number of different particles used) for a single cluster realization, and
nconf the number of different cluster realizations over which the reported results are averaged.
The meaning of the other parameters is given in the text. All of the results presented in this
paper refer to this choice of parameters unless otherwise stated.

` tmax nruns nconf τhop τ
(0)
sing ns τ

(0)
nr h̄ωph/k p Porosity Ecut

31 4000 2000 200 150µs 150µs 1.5 900µs 800 K 25 65 % 0.04 eV

In our calculations, we have arbitrarily chosenfe = 1/3, fh = 2/3 andfex = 0.4 in
order to take into account the distribution of the energy-gap discontinuity,E−EBulk, among
the valence and conduction bands [31]. Extensive Monte Carlo simulations have been done
by using the same set of parameters but for differentfex. The effect of varyingfex is to
change the barrier for hopping,fex 1Eij , which is mostly relevant at low temperatures. By
increasingfex, a decrease in the luminescence decay rate occurs, but essentially no changes
in the luminescence decay lineshapes are observed, i.e. in equation (1)τ increases andβ
remains constant. The mean distances over which the excitons move before recombination
are reduced as the effective barrier,fex 1Eij , is increased. However, forfex in the interval
[0.2–0.6] the numerical results are qualitatively not affected and quantitatively they change
by less than 10%. Table 1 reports the values of all of the parameters used in our simulations
for 1D, 2D and 3D systems whose results are presented in the following.
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Figure 2. Temperature dependences of the transition times (equation (13)) for an energy of
1.86 eV: τrad (short-dashed lines),τnr (long-dashed lines) andτ (continuous line). Here we
have used the same set of parameters as given in table 1 except for: case (1), thick lines:
τ

(0)
sing = 150 µs, τ

(0)
nr = 900 µs; case (2), thin lines:τ (0)

sing = 100 µs, τ
(0)
nr = 400 µs; and case

(3), thin lines: τ (0)
sing = 200 µs, τ (0)

nr = 7000µs.

2.4. The case of isolated Si nano-crystals

Let us consider the case in which no hopping between n.n. Si nano-crystals occurs in the
system. This limiting situation may well describe porous Si samples in which Si nano-
crystals are efficiently passivated and surrounded by thick surface oxide layers. This case
represents an ensemble of isolated QDs, each characterized by its own sized and transition
energyE. To obtain the luminescence spectrum of the whole ensemble as a function of
time, for different observation energies and temperatures, the rate equation describing the
time evolution of the densityN(t) for a single carrier at a given Si nano-crystal (site) is
solved. Such a rate equation reads

dN(t)

dt
= − N

τrad
− N

τnr
(12)

and the exact solution is

N(t) = N(0) exp(−t/τ ) with
1

τ
= 1

τrad
+ 1

τnr
. (13)

Typical behaviours of the different times entering in equation (13) as a function of
temperature, for fixed energyE, are shown in figure 2.

The luminescenceL(t) from a single Si nano-crystal is justL(t) = N(t)/τrad, i.e.

L(t) = L(0) exp(−t/τ ) (14)

yielding simple exponential decay, i.e.β = 1 (compare equation (1)). As pointed out in [8],
the luminescence decay time is essentially determined by non-radiative recombinations at
room temperature. According to equation (13) and figure 2, non-radiative recombinations
play a major role also at low temperatures when the radiative lifetime, dominated by
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the triplet recombination lifetime, becomes very large. In the intermediate-temperature
range, when the quantum efficiency also increases, the singlet lifetime may dominate
the recombination lifetime, if it becomes sufficiently small and thermal quenching of the
phonon population takes place, decreasing the cross-section for capture to the non-radiative
recombination centres. This is case 3 in figure 2. At sufficiently high temperatures, non-
radiative recombinations dominate again.

Figure 3. Quantum efficiencies of an ensemble of isolated quantum dots:ε(E, T )P (E) versus
E for various temperatures given on the curves in K. The temperature dependence of the Si
band-gap has been neglected. Note that only relative variations of the quantum efficiency as a
function of temperature are relevant, and no appreciable energy shifts in the distributions are
observed when temperature is changed.

The total radiated intensity

I (E, T ) =
∫ ∞

0
dt L(t) = N(0)τ/τrad

is related to the corresponding quantum efficiency,ε(E, T ) defined as

ε(E, T ) ≡ I (E, T )

N(0)
= τnr

τnr + τrad
. (15)

For illustration, the quantityε(E, T )P (E), representing the quantum efficiency of the
ensemble of QDs described by equation (2) for an energyE, is plotted for several
temperatures versus energy in figure 3. The total quantum efficiency of the ensemble,ε(T ),
is just the sum of equation (15) over the total number of Si nano-crystals in the system,
i.e. ε(T ) = ∑

E P (E)ε(E, T ). This quantity is shown in figure 4. At high temperatures,
we find an exponential behaviourε(T ) ∼ exp(−T/T0), whereT0

∼= 59 K (see cases (1)
and (2) in figure 4), in good agreement with recent experimental results (see, e.g., [32]).
The values ¯hωph/kB = 800 K andp = 25 (see section 2.2) were chosen such thatε(T )

displays a maximum in the range 100< T < 200 K and a value of about 10% at room
temperature, as is experimentally observed [8].
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Figure 4. Total quantum efficiencies of the ensemble of quantum dots,ε(T ), versus temperature.
Here we have used the same set of parameters as given in table 1 except for: case (1), thick
line: τ

(0)
sing = 150 µs, τ

(0)
nr = 900 µs; case (2), thin line:τ (0)

sing = 100 µs, τ
(0)
nr = 400 µs; and

case (3), thin dashed line:τ (0)
sing = 200 µs, τ

(0)
nr = 7000 µs. The thick dashed lines represent

the exponential behaviourε(T ) ∼ exp(−T/T0), with T0 = 59 K for case (1) and case (2) and
T0 = 75 K for case (3).

Figure 5. Absorption coefficients of the ensemble of isolated quantum dots,α(E, T ), versus
energy for the indicated temperatures,T .

Finally, the absorption coefficientα(E) of the ensemble can be obtained from the
relation

α(E, T ) ' constant

E
|M|2ρ(E) (16)
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where|M| is the dipole matrix element at the band-edge describing radiative transitions in
the QD, andρ(E) is the total density of states.|M| is related to the oscillator strength
of the transition and hence to the radiative lifetime, i.e.|M|2 ∼ τ−1

rad(E, T ) [28]. Using
the result obtained in section 2.1 forρ(E), equation (4), and expression (5) forτrad, we
obtain the absorption coefficient of the ensemble as displayed, for various temperatures,
in figure 5. Remarkably, this very simple model is able to reproduce the main features
of the measured absorption coefficient [9], i.e. a quite sharp edge at about 1.6 eV and an
increasing exponential shape at high energies with a slope which depends on the temperature.
An exponential fit at high energies,α(E) ∼ exp(E/E0), of the curves shown in the figure
yields for the energy slopes:E0 = 0.55 eV forT = 30 K, 0.34 eV forT = 100 K, 0.29 eV
for T = 200 K and 0.28 eV forT = 300 K. The temperature dependence ofα(E) is due to
theτrad-term in equation (16). Similar exponential dependences of the absorption coefficient
at largeE have been repeatedly observed in porous Si [32, 33] at room temperature. Further
measurements at different temperatures would be desirable.

2.5. Rules for the Monte Carlo simulations

In the case in which hopping of carriers between nearby Si nano-crystals takes place, the
rate equation forN(t), equation (12), is modified to

dNi(t)

dt
= − Ni

τrad
− Ni

τnr
−

∑
j

PijNi(t) +
∑

j

PjiNj (t) (17)

yielding a system of coupled differential equations for the different occupied sitesi. For
simplicity, we have omitted the indexx, denoting the type of carrier, from equation (17).
The third term in equation (17) represents the particles going out from sitei (the loss term),
while the last term represents the particles coming in to sitei from the neighbour sitesj (the
feeding term). In one dimension, the number of nearest-neighbour sitesn = 2, and because
of structural disorder, in two dimensions 16 n 6 4, and in three dimensions 16 n 6 6.
The system in equation (17) is conveniently solved by Monte Carlo (MC) simulations when
the total number of effectively coupled occupied sitesi becomes large (see, e.g., [34]). In
particular, certain constraints for the occurrence of recombination processes, such as the
simultaneous presence of an electron and a hole at a given site, can be easily implemented
with the MC method.

Before discussing the MC rules, we need to determine the unit of time, denoted asτ0,
which should be sufficiently small that faster transition events are well described. Once the
transition timesτ have all been determined in the system, one can takeτ0 = τfast/nt , where
τfast is the smallest transition time in the ensemble andnt > 1. We have usednt = 10 in
our simulations. Notice that the timet becomes now a discrete variable, i.e.t = nτ0, where
n > 1 denotes thenth MC step. The total elapsed time for each MC step is justτ0.

We can now discuss the MC rules for the present model. Since we are interested only
in the case of very low carrier density, i.e. different electron–hole pairs in the system do not
see each other (no interaction effects or Auger recombinations), we study the time evolution
(trajectory) of asingle electron–hole pair (either as an exciton or as two independent
particles), which is initially located (t = 0) at the centre of the lattice. Averages are
then performed over many trajectories and different realizations of disorder.

During thenth MC step, a particle at sitei may undergo one of the following four
different processes:

(1) decaying radiatively (annihilating) with a probabilityprad = τ0/τrad;
(2) decaying non-radiatively (annihilating) with a probabilitypnr = τ0/τnr;
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(3) hopping to a n.n. sitej with a probabilitypij = τ0Pij ; or
(4) remaining at sitei with a probabilitypsit = 1 − prad − pnr − ∑

j pij .

In the case in which an electron and a hole are considered, a decay can only take place
when both carriers are located at the same site.

Figure 6. A snapshot of the energy landscape for diffusion in a one-dimensional lattice. The
transition energyE is plotted versus position, for:Ecut = ∞ (uncorrelated values, top panel);
0.04 eV (middle panel); and 0.004 eV (bottom panel). The mean energy value over the 29 791
sites is 1.86 eV for the three cases.

According to our definition ofτ0, all of the above probabilities are smaller than one as
required. To decide which event will take place for a given particle at sitei, we generate
a random numberr, uniformly distributed in the range 0< r < 1. Then, we evaluate the
partial sums over the probabilities, i.e.

∑m
k=1 pk = Sm, where the indexk = 1 represents a

radiative recombination event,k = 2 a non-radiative one, etc, andm > 1. The successful
event is the one for whichSm > r for the first time. For example, consider a 1D system
and letprad = pnr = 0.2 (equally likely radiative and non-radiative recombinations) and
pi(i−1) = pi(i+1) = 0.1 (i.e. equal hopping rates to two n.n. sites). Then, ifr = 0.55,
the particle will undergo the fourth possibility, i.e. it will hop to the second n.n. site. If,
however,r > 0.6, the particle will remain at its present site.
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A single MC step is completed when the above-discussed procedure has been applied
to each particle in the system (either the exciton, or the electron and hole), and the time
t is increased byτ0, t = t + τ0. At the nth MC step, corresponding to timet = nτ0, the
luminescence of the system is simply obtained by counting the total number of radiative
events during thenth MC step. Since we are also interested in the energy dependence of the
luminescence, those radiative events originating at sites characterized by transition energies
E′ close to the observation energyE (i.e. |E′ − E| > δE) are recorded separately. In our
simulations we usedδE = 0.01 eV.

We proceed with the numerical results obtained for one-dimensional lattices.

Figure 7. Monte Carlo simulation results for a one-dimensional system of excitons. Lumin-
escence versus time for four different temperatures:T = 20 K (squares); 100 K (triangles);
300 K (full circles); and 500 K (empty circles).

3. Results for one-dimensional lattices

At very high porosities, porous Si is characterized by a filamentary structure having a
quasi-one-dimensional character on small length scales [35]. Thus, we start our discussion
about transport (diffusion) of carriers in porous Si on a simplified one-dimensional model.
Preliminary results with the set of parameters named case (3) in figures 2 and 4 are reported
in [19].

When the carriers are allowed to hop between n.n. sites of the linear lattice, the diffusive
motion takes place in a highly irregular energy landscape. This feature of the model is
illustrated in figure 6, where the local transition energiesE are plotted as functions of
position on the one-dimensional lattice. In the figure, three cases are considered for selected
values of the parameterEcut (see section 2.1). Although local variations in energy can be
smoothed out whenEcut becomes sufficiently small, on large length scales appreciable
variations ofE will always occur (see figure 6). This has important consequences when
considering hopping processes, because carriers must eventually overcome an effective large
barrier to diffuse out of a region of local minimum energy. According to our definition of
the transition rates in equation (10), thermally activated hopping against such large effective
barriers will be strongly hindered at sufficiently low temperatures, even in the case of low
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Ecut-values. The low-energy sites with lowprad and high energy barriers1Eij act as
temporary traps. Excitons which relax to these sites are temporarily trapped into them and
have to wait long times before being released.

To quantify the effect of disorder on diffusion we calculate the mean square displacement
of the carrier as a function of time,R2 ≡ 〈r2(t)〉 − 〈r(t)〉2, and investigate its temperature
dependence.r(t) is the displacement with respect to the initial position, which is assumed
to be the origin. To study the effect of the dynamics of carriers on the time dependence of
L(t), we have solved equation (17) for the values given in the table 1. Since in experiments
all sites of the system are homogeneously excited att = 0, including those with energyE
close to the observation energyEobs, initially, the electron–hole pair is placed at a site (the
centre of the lattice) characterized by an energyE ∼= Eobs.

Figure 8. Fittings of the luminescence decay (circles) obtained from a Monte Carlo simulation
for a one-dimensional system of excitons atT = 100 K. The following fitting functions and best-
fit parameters have been used: stretched exponential function withτ = 345 µs andβ = 0.815
(full line); single-exponential decay withτ = 555 µs (dotted line); double-exponential with
τ1 = 80 µs andτ2 = 503 µs (dashed–dotted line). The top panel reports the relative errors,
defined as the ratio of the difference of the simulation data (Y ) minus the computed value (YFIT)
times the simulation data, i.e. [(Y − YFIT)/Y ], for the three fitting functions.

In the case of excitons, the behaviour of the luminescence is shown in figure 7 for
four different temperatures and observation energyEobs = 1.86 eV. Two features are
evident: (i) the decay departs from the simple exponential decay obtained for isolated QDs
(corresponding toτhop = ∞); and (ii) the time-scale of the decay is strongly temperature
dependent. The last item is due to the thermal population of the singlet state (fast radiative
recombination time) and to the onset of efficient non-radiative decay, especially at the
highest temperature. The lineshape analysis shown in figure 8 provides evidence that a
stretched exponential function is required to fit the decay. The single-exponential and the
double-exponential functions are able to fit the decay only for a limited time range.
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The stretched exponential decay reflects the fact that a time delay between recombination
events at a given QD may occur when the exciton can diffuse out of the QD. Such time
delay can persist on large time-scales since the exciton may either diffuse far away from
the site at which the radiative event is expected, or may become temporarilytrappedat a
nearby site with a lower transition energy. When the observed radiative events are collected
from sites with similar transition energiesE, the random local environment around each
of these sites leads to a distribution of recombination times, which are in general different
to the single valueτrad(E, T ) for that energyE. This dispersionof recombination times
causes the stretched exponential behaviour observed in the model.

Figure 9. Monte Carlo simulation results for a one-dimensional system of uncorrelated electron
and hole pairs. Luminescence versus time for four different temperatures:T = 30 K (dots);
50 K (circles); 100 K (triangles); and 300 K (squares). The lines are power-law fits to the decay
with the following exponents:α = 0.86 (T = 30 K); 0.79 (T = 50 K); 0.73 (T = 100 K); and
0.91 (T = 300 K). The curves are vertically shifted for clarity.

In the case of uncorrelated electron and hole motion, a quite different behaviour is
observed (see figure 9). At high temperatures, and intermediate times, an approximate
power-law decay of the form

L(t) ∼ t−α (18)

takes place. The range of times over which the power-law decay seems to occur grows as
the temperature is raised. Here, the uncorrelated motion of the electron and hole leads to
a dramatic slowing down of the luminescence decay, since the two carriers are no longer
constrained to be all the time simultaneously at the same site. Similar lineshapes have
been observed for amorphous hydrogenated silicon [36]. In this system, the luminescence
is explained as due to geminate recombination between e–h pairs localized in band-tail
states [37].

We have performed extensive MC simulations for different temperatures. In the case
of excitons, the decay lineshapes are fitted by a stretched exponential function for all of
the temperatures considered. A statistical weight of the simulation points has been used
to obtain the best-fit function. The results of the fits are summarized in the upper panel
of figure 10. Typical errors forτ of 10% andβ of 0.02 are expected, due to statistical
fluctuations and the goodness of the fits. The lifetimeτ decreases significantly as the
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Figure 10. Temperature dependences of the luminescence recombination timeτ (circles) and
dispersion exponentβ (full circles) obtained by a stretched exponential fit to the time decay of
the luminescence, for an exciton population in one-dimensional (upper panel), two-dimensional
(middle panel) and three-dimensional (lower panel) clusters.

temperature is raised, while the dispersion exponentβ increases and tends to unity at high
temperatures.

We have also calculated the quantum efficiencyε(E, T ) as a function ofE for a fixed
temperature, displaying a maximum at aroundE = 1.86 eV and found that hopping of
carriers does not sensitively affectε(E, T ). This is clear becauseε(E, T ) is essentially
determined by the on-site recombination dynamics. Independently of the dispersive
motion, all of the carriers recombine radiatively or non-radiatively after a sufficiently long
time. The diffusion only influences the recombination dynamics by introducing long-lived
recombinations.

In figure 11, we show the values ofR2(t) for different temperatures. At low
temperatures, an anomalous behaviour of the formR2(t) ∼ t2/dw with dw > 2, takes place
(figure 12). These anomalies are due to the random distribution of hopping rates, which is
known to yield values ofdw > 2 and dependent on temperature (see, e.g., [38, 39, 40]). At
low temperatures, however, the time dependence ofR2(t) departs from a power law and
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Figure 11. Mean square displacementsR2(t) of excitons in one dimension for three different
temperatures:T = 20 K (circles); 100 K (triangles); and 500 K (squares). Here,a is the lattice
constant. The straight lines have slopes corresponding todw = 2 (T = 500 K), anddw = 2.07
(T = 100 K). At T = 20 K, strong deviations from a straight line occur, indicating that a
power-lawansatzfor R2(t) is no longer appropriate. The curves are vertically shifted for clarity
by factors:f = 100 for T = 20 K; andf = 10 for T = 100 K.

Figure 12. Anomalous diffusion exponentsdw obtained by a power-law fit to the mean square
displacementsR2(t) of excitons in one-dimensional (circles), two-dimensional (full circles) and
three-dimensional (triangles) clusters.

logarithmic time dependences occur (see also [40]).
At sufficiently low temperatures, indeed, the present model is expected to display

transport behaviour similar to diffusion in the presence of random fields (the Sinai model);
see [41] and [42]. To show this, we have drawn in figure 13 a small section of a typical
energy landscape versus position. The arrows represent the localfields felt by the carrier
which are proportional to the energy difference1Eij between the two n.n. sitesi and j .
Due to the assumed random distribution of nano-crystal sizes in the system, the local fields
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Figure 13. The energy landscape (transition energiesE versus position) in one dimension. The
arrows are drawn in direct correspondence with the local energy difference between nearby sites.
The resulting one-dimensional chain (lower panel) is equivalent to the Sinai model, in which
uncorrelated random fields are present at each site of the lattice.

Figure 14. Mean square displacementsR2(t) of excitons in one dimension plotted versus
(log t)4 for the temperatures:T = 20 K; 30 K; and 50 K. Here,a is the lattice constant. The
straight line through theT = 30 K results represents the asymptotic(log t)4-behaviour. The
line through theT = 50 K results shows the power-lawt2/dw -behaviour, withdw = 2.5.

are randomly oriented, similarly to in the Sinai model. Diffusion of carriers in the system
is biased by these random fields and becomes ultra-anomalously slow. Of course, in the
present model the energy barriers (and also the potential valleys) cannot grow indefinitely as
in the Sinai case. However, when the temperature is sufficiently low, diffusion is strongly
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hindered and the carriers can only explore small length scales since the effect of the random
fields becomes dominant. In these circumstances, a logarithmic time dependence is expected

R2(t) ∼ (log t)4 (19)

at long times. Results obtained for the case of excitons are plotted in figure 14. These
suggest that for large times and low temperatures, our model displays logarithmic time
dependencies of the form predicted by equation (19). To our knowledge, this is the first time
that such logarithmic time dependencies ofR2(t) have been predicted for a model aimed at
describing a disordered system such as porous silicon. Actually, the value of the exponent
describing the logarithmic time dependence turns out to depend slightly on temperature,
and the value of four is observed only forT ∼= 30 K. At lower T , R tends to extrapolate
to a constant value because the carriers are annihilated (non-radiative annihilation events
dominate) and the carriers can only explore a finite spatial extent asymptotically. A similar
trend is also observed for electrons and holes in the case of uncorrelated electron–hole pairs.

4. Two- and three-dimensional models and results

The actual geometrical structure of porous silicon is not known accurately. For many
purposes, however, one may hope to capture the essential features of such complex structures
by modelling them with simple, yet non-trivial, percolation-like clusters [43]. The clusters
are generated by using a modified version of the well-known growth algorithm employed
for percolation clusters (see, e.g., [43]), which is adapted here to our present purposes.

For simplicity we consider a square lattice in two dimensions, and a simple cubic one
in three dimensions. The linear size of the lattice is denoted by`. The growing process
starts at the seed, which is located at the centre of the otherwise empty lattice. The growth
proceeds according to the following rules. A nearest-neighbour sitej of the seed can be
occupied with probabilitypn, with the indexn indicating the number of occupied sites
nearest to the growing sitej . Initially, n = 1. If the sitej is not occupied, i.e. if it does
not become part of the cluster, it is blocked and cannot be occupied later. The process
continues from the last occupied sites and now valuesn > 1 may occur.

For standard percolation clusters, one takespn = p independently ofn. Whenp < pcrit,
pcrit

∼= 0.593 (two dimensions), andpcrit
∼= 0.312 (three dimensions), only finite clusters

can grow, while infinite clusters develop whenp > pcrit. Whenp = pcrit, large percolation
clusters may grow which are fractal (with fractal dimensiondf

∼= 1.896 in two dimensions,
and df

∼= 2.5 in three dimensions) on large length scales. Finite clusters and the infinite
cluster abovepcrit are also fractal (with the same fractal dimensiondf ) for length scales
smaller than the correlation length. The latter diverges atp = pcrit.

In our model, we takep1 > p2 andpn = 0 whenn > 2. In the following, we consider
for illustration the casesp1 = 0.65 andp2 = 0.15 in two dimensions, andp1 = 0.45 and
p2 = 0.17 in three dimensions. (A detailed discussion of the effects of varying the growth
parametersp1 andp2 on the luminescence exceeds the scope of the present work.)

We notice that whenp1 → 1, andp2 → 0, the clusters tend to grow linearly, while for
relatively largep2, compact clusters can be grown. By varying bothp1 andp2, a variety
of structures can be obtained which are suitable for our present purposes. A measure of
the porosity of the cluster is simply given by the ratio between empty sites and occupied
sites. Typical examples are shown in figure 15 for three-dimensional clusters, and in [20]
for two-dimensional clusters. The clusters are uniform on large length scales, but still
display spatial fluctuations on small length scales, similar to the infinite cluster abovepcrit

[20]. Thus, the intrinsic fractal character of percolation is common to the clusters shown
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Figure 15. Percolation-like clusters grown on a simple cubic lattice representing porous silicon
of the same 97.4% porosity but different growth probabilities: (a)p1 = 0.9, p2 = 0.050 35;
(b) p1 = 0.3235,p2 = 0.4.

in figure 15 too. It is possible to construct highly constrained and filamentary clusters (like
that in figure 15(a)) or more compact clusters (like that in figure 15(b)).

We have studied the dynamical behaviour of carriers on these clusters, following the
same MC rules as described above. The question now is how the extra degrees of freedom
in space, resulting from the two- or three-dimensional topology of the clusters, modify the
time decay ofL(t). Preliminary results for two-dimensional systems have been reported in
[44]. Results for three-dimensional systems are reported in figure 16 for the luminescence
decay [20]. For excitons and uncorrelated electron–hole pairs, the lineshape is a stretched
exponential and a power law, respectively. Hence the decay lineshape is not modified by the
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Figure 16. The luminescence decay of a three-dimensional system of excitons (upper panel) and
of uncorrelated electron–hole pairs (lower panel) for three different temperatures:T = 300 K
(circles); 200 K (full circles); and 100 K (triangles). The lines are fits to the luminescence decays.
Stretched exponentials have been used for the exciton case with the following parameters:
τ = 175 µs andβ = 0.58 (T = 100 K); τ = 135 µs andβ = 0.62 (T = 200 K); andτ = 66
µs andβ = 0.73 (T = 300 K). Power laws,t−α , have been used for the uncorrelated electron–
hole pairs with the following parameters:α = 0.96 (T = 100 K); α = 1.10 (T = 200 K); and
α = 1.28 (T = 300 K). In this case, the curves are vertically shifted for clarity.

increased dimensionality. Results of stretched exponential fits to the luminescence decay in
two or three dimensions, for the exciton model, are reported in figure 10 as a function of
temperature.

The three-dimensional topology has important consequences for the decay of the
luminescence. Theτ - andβ-values are lower, indicating that the role of hopping processes
in three dimensions is more important than in lower dimensions. While the one-dimensional
model (and also the two-dimensional one) predicts values ofβ close to unity already at room
temperature, in three dimensions, in contrast, the theoretical values are consistent with the
experimental results forβ, which typically saturate at values ofβ ∼= 0.7–0.8 [18, 19]. Thus,
values ofβ < 1 at high temperatures, and intermediate porosities, can be explained by our
model as the result of the interplay between a complex conducting matrix (representing the
topology of porous Si), and an additional local disorder due to the distribution of nano-
crystal sizes in the system.

A comparison of the temperature dependence ofτ and β for two different sets of
parameters (but for the same growth parametersp1, p2 as mentioned above) is reported in
figure 17. The effect of varyingτnr is evident inβ: the larger theτnr the lower isβ. The
role of temporary traps, which tend to reduceβ and are effective at low temperatures, is
enhanced whenτnr is increased due to a relative increase of the role of exciton diffusion
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Figure 17. Temperature dependences of the luminescence recombination timesτ (empty
symbols) and dispersion exponentsβ (filled symbols) for excitons in three-dimensional clusters
and for two different sets of parameters. Circles correspond to case (1) of figure 2 and to the
standard set of parameters reported in table 1. Triangles correspond to case (2) of figure 2 and
hopping timeτhop = 100 µs. The lines are the lifetimes calculated using equation (13) in the
case of isolated quantum dots, i.e. without hopping, for case (1) (full line) and case (2) (dotted
line).

(∼τnr/τhop).
The dynamics of carriers is influenced by the parametersp1 and p2 used to construct the

clusters. The more the cluster is filamentary (see, e.g., case (a) in figure 15), the more the
excitons are constrained to move along one direction, and the larger areτ andβ. Then, the
dynamical behaviour of carriers should have essentially a one-dimensional character, at least
for sufficiently low temperatures where transport along the structure is strongly hindered.
Thus, we expect to observe, in this regime, the same logarithmic time dependence ofR2(t)

as in the one-dimensional model, equation (19), at short times.
For arbitrary porosities and not too low temperatures, we find anomalous behaviour

of R2(t) ∼ t2/dw , at intermediate times (figure 18). Here,dw > 2 and increases as the
temperature decreases, more than in the one-dimensional case (figure 12), and is typical of
diffusion in the presence of a distribution of hopping rates (see, e.g., [38, 39, 40]). One
should note that anomalies inR2(t) are typical of diffusion on fractals too. In these systems,
however, the anomalies have a purely geometrical origin and are due to the structural
constraints of the fractal, i.e. dangling ends and loops on all length scales, which slow down
the diffusion process on all time-scales. On fractals, however, the diffusion exponentdw is
temperature-independent [43], while heredw turns out to depend strongly on temperature
(see figure 12). The intrinsic fractal behaviour ofR2(t) can only be observed for distances
R2(t) < ξ , whereξ is the correlation length within which the clusters are fractal, and at
high temperatures such that the effect of the energy barriers can be neglected. Under these
circumstances one can expect to observe a temperature-independent exponentdw > 2. In
three dimensions,dw

∼= 3.8 for percolation clusters at criticality (see, e.g., [43]). Since
our clusters are compact already at intermediate length scales, the true fractal behaviour
discussed above cannot actually be reached. We conclude that the anomalies that we
found are due to the distribution of energy barriers, which are enhanced by a strong local
geometrical disorder.

The situation is different at low temperatures, where the carriers can only explore
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Figure 18. Mean square displacementsR2(t) of excitons in three-dimensional clusters for four
different temperatures:T = 20 K (squares);T = 30 K (triangles);T = 50 K (circles); and
T = 100 K (full circles). Here,a is the lattice constant. The curves are vertically shifted for
clarity by factors:f = 1000 forT = 20 K; f = 100 forT = 30 K; andf = 10 for T = 50 K.
The lines are power-law fits with effective anomalous exponents:dw = 2.62 (T = 100 K); 3.5
(T = 50 K); 5.16 (T = 30 K); and 6.4 (T = 20 K). Note, however, the bending of the data at
low temperatures and long times, indicating that a power-law fit to data is no longer appropriate.

Figure 19. The mean square displacementR2(t) of excitons in three-dimensional clusters for
the temperatureT = 30 K, plotted as a function of(log t)2. Here,a is the lattice constant. Note
the linear increase at long times.

their local environment, and effects due to both the distribution of energy barriers and
the underlying fractal structure of the clusters play a role. Indeed, at sufficiently lowT ,
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we have observed again a logarithmic time dependence ofR2(t). In three dimensions, we
have found clear evidence for the behaviour

R2 ∼ (log t)2 (20)

at long times (figure 19), in contrast to the fourth-power result valid for the Sinai model
in one dimension. This new behaviour represented by equation (20) has been predicted
for the case of biased diffusion on random fractals in two dimensions [42]. Such a biased
diffusion problem is equivalent to the presence of energy barriers at small length scales in
our model, as discussed for the one-dimensional case (figure 13). As we can see from the
present results, a behaviourR2 ∼ (log t)2 can be expected also in three dimensions. We
should note that logarithmic dependences have been already reported in the literature for
exciton dynamics in amorphous systems for infinite-range-hopping models [40], but a direct
relation with the present results, in which only jumps between nearest-neighbour available
sites are allowed, is not straightforward.

5. Discussion

According to the present model, the photoluminescence decay,L(t), is determined, in the
case of excitons, by the rates of recombination and escape from the isolated QD. In the case
of uncorrelated electron–hole pairs,L(t) is determined by the diffusion of the electron and
the hole, because both need to be on the same QD to recombine radiatively.

In the case of excitons, the disordered environments of the QDs, from which the
luminescence is observed, cause a distribution of waiting times for hopping and/or release
times for activated emission from the temporary traps, and the luminescence displays a
stretched exponential decay. In the case of uncorrelated electron–hole pairs, the main role
is played by the encounter probability of the electron and hole, i.e. the probability that both
carriers meet on the same site. In this regime, the time dependence of the recombination
rate becomes a power law [23], which is then reflected in the luminescence decay.

For all spatial dimensionsD, the increase inβ is almost linear for 10< T < 60 K,
has a plateau for 60< T 6 200 K and then increases rapidly to 1 at higher temperatures.
This behaviour corresponds to the following three typical regimes: a first one in which
the temporary traps play a role (low temperatures); a second one in which hopping
dominates and diffusion is restricted only by the porous Si network geometry (intermediate
temperatures); and a third one, in which the rapid on-site non-radiative recombinations are
most effective and dominant (high temperatures).

Whereas there is general agreement among different experimentalists thatτ strongly
depends on temperature [7, 8, 18], the situation is less clear regarding the exponentβ.
While some authors report values ofβ ∼= 0.8–0.9, independent of the temperature [15, 16],
others found temperature-dependent values [17, 18, 19]. In this case, theβ-values follow
similar temperature and energy dependences in the range 0.4–0.8. By varying the parameters
in our model, we are able to describe both situations. Temperature-dependentβ-values are
shown in figure 17. Temperature-independent values can be obtained whenτhop < τnr and
τsing, since in this case the activation term in equation (10), which is mainly responsible for
the temperature dependence ofβ, does not influence the diffusion of carriers, being only
restricted by the geometrical constraints of the porous Si network.

By going from an interconnected array of QDs to an ensemble of isolated QDs our
model predicts that the lifetimeτ and the dispersion exponentβ increase, withβ taking
values near 1. This has indeed been observed in several experiments. For example, the
data presented in [45], and reanalysed using stretched exponential functions, show thatτ
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and β increase after dry oxidation of porous Si. It is well known that the interconnected
array of QDs typical of porous Si is transformed after dry oxidation into a dispersion of
nano-crystals immersed in a SiOx matrix; on further increasing the oxidation a porous glass
is formed [6].

Our simulations show that hopping of excitons is responsible for the stretched
exponential decay observed in porous Si. This rules out other explanations which are
based on analogies with hydrogenated amorphous Si (a-Si:H); see, e.g., [46]. In fact we
demonstrated that PL decay lineshapes, strongly resembling those measured for a-Si:H, are
found for uncorrelated e–h pairs. This behaviour can possibly explain the lack of room
temperature luminescence in a-Si:H. In fact, it is possible that the fast-diffusing species in
the pair is rapidly trapped into non-radiative recombination centres when the thermal energy
is sufficiently large to promote the particle to extended states [47].

Table 2. 300 K simulation results for a 3D clusters of 65% porosity as a function of the time
parameters:τ (0)

nr andτhop. The other parameters are given in table 1.

τ
(0)
nr τhop τ QE

(µs) (µs) (µs) β (%)

900 150 72 0.77 12
800 300 84 0.87 10
800 100 59 0.72 10
500 150 51 0.84 7

Annealing treatments induce a quenching of the room temperature luminescence with a
decrease in the values ofτ andβ [14]. Within our model, this is simulated by diminishing
τ (0)

nr and τhop yielding lower values ofτ , β and quantum efficiency (see table 2). The
separate effects of varyingτ (0)

nr andτhop are the following.

(a) Reducing the non-radiative lifetime yields an increase ofβ and a decrease ofτ .
The reason for this is that the re-population of the target QDs, those from which the
luminescence decay is recorded, is reduced by the competitive non-radiative recombination
channels. Fewer excitons reach the target QD at long times because a large part recombine
non-radiatively as they diffuse through the system. The target QD effectively behaves as
being more isolated (increase ofβ). Then, τ is reduced due to the competing on-site
non-radiative recombinations, and consequently the quantum efficiency is also reduced.

(b) Reducingτhop yields a reduction ofτ andβ. In fact, for higher hopping probabilities,
the target QDs are emptied faster due to the competing loss of excitons caused by hopping
(reducingτ ), while at long times more excitons reach the target QD giving rise to long-
lived recombinations (reducingβ). In this case, no variations in the quantum efficiency are
expected.

Hence to obtain the trends measured during the annealing experiments both the lifetimes,
τ (0)

nr andτhop, should be reduced.
Let us compare our simulations with other models. The non-exponential decay ofL(t)

has been explained as due to a distribution ofτrad-values arising from a shape distribution
of quantum dots with the same emission energy [7, 48]. Within this assumption, however,
it is difficult to explain the temperature dependence ofβ already discussed. It has also
been proposed that the non-exponential behaviour ofL(t) is a consequence of a distribution
of non-radiative decay rates [49, 50]. This fact is not considered in our model, and a
refined version of it should certainly contain such a dependence. However, we want to
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emphasize here that it is the dispersive motion of excitons which is mostly responsible for
the non-exponential decay ofL(t). The radiative and non-radiative lifetime distributions
could indeed concur to produce a similar effect onL(t), but in isolated and well passivated
quantum dots it is reasonable to expect essentially a simple exponential decay ofL(t).
Such a behaviour has indeed been observed for some porous Si samples [51] and for Ge
nano-crystals [52].

The strong temperature dependence of the effective anomalous diffusion exponentdw,
and the logarithmic time dependencies ofR2(t) at lower temperatures, have important
consequences for the ac conductivity, which is expected to display a strong frequency
dependence at low temperatures. This observation is supported by recent experimental
results on the ac conductivity of porous Si [53]. In contrast, at higher temperatures,
diffusion becomes normal,R2(t) ∼ t , i.e. dw → 2, and the dispersion frequency range
shrinks considerably. It should be emphasized that a model for the structure of porous
Si has been suggested recently [53] in which the porous Si network is assumed to be the
infinite percolation cluster above criticality. From our present results, however, one can see
that such a model is far too simple to describe porous Si samples of different porosities, and
a more elaborate model is required. In addition, theoretical results for the ac conductivity
discussed so far [53] have been obtained using mean-field approximations, and the new
intrinsic behaviour suggested here for diffusion of carriers in porous Si at low temperatures
cannot be obtained.

6. Conclusion

The theoretical results obtained in this paper have for the moment a semi-quantitative
character. A quantitative comparison between the present results and the available
experimental data can be made possible when the parameters entering the model may be
estimated independently and more accurately. Also, the precise relations between the nano-
crystal structure and dynamical properties are so far unknown. We have tried to make
up for this lack by makingad hoc, yet standard assumptions which seem to describe the
physics of porous Si rather well. In addition, the actual values of the parameters are
so strongly sample dependent and influenced by various treatments (ageing, oxidation,
storage, excitation conditions, etc) that quantitative predictions valid in general are not
possible. However, several experimentally measured trends in the photoluminescence life-
times, dispersion exponents and quantum efficiencies of the luminescence are correctly
explained in the framework of the present calculations by choosing the free parameters of
the model appropriately. This gives strong support for the validity of the present model for
describing the recombination dynamics in porous Si.

Finally, by assuming different forms for the various quantities reported in section 2,
other systems can be described as well by the present model—for example, nanometre-
sized Si crystallites [54], and CdSSe quantum dots [55]. All of these systems show a
stretched exponential decay of the luminescence.
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